arXiv:2505.13007v1 [cs.LG] 19 May 2025

Generative Modeling of Random Fields from Limited
Data via Constrained Latent Flow Matching

James E. Warner* Tristan A. Shah*
NASA Langley Research Center Texas Tech. University
Hampton, VA 23681 Lubbock, TX 79409
james.e.warner@nasa.gov trisshah@ttu.edu
Patrick E. Leser Geoffrey F. Bomarito
NASA Langley Research Center NASA Langley Research Center
Hampton, VA 23681 Hampton, VA 23681
patrick.e.leser@nasa.gov geoffrey.f.bomarito@nasa.gov
Joshua D. Pribe Michael C. Stanley
Analytical Mechanics Associates Analytical Mechanics Associates
Hampton, VA 23681 Hampton, VA 23681
joshua.pribe@nasa.gov michael.c.stanley@nasa.gov
Abstract

Deep generative models are promising tools for science and engineering, but their
reliance on abundant, high-quality data limits applicability. We present a novel
framework for generative modeling of random fields (probability distributions over
continuous functions) that incorporates domain knowledge to supplement limited,
sparse, and indirect data. The foundation of the approach is latent flow match-
ing, where generative modeling occurs on compressed function representations
in the latent space of a pre-trained variational autoencoder (VAE). Innovations
include the adoption of a function decoder within the VAE and integration of
physical/statistical constraints into the VAE training process. In this way, a latent
function representation is learned that yields continuous random field samples
satisfying domain-specific constraints when decoded, even in data-limited regimes.
Efficacy is demonstrated on two challenging applications: wind velocity field
reconstruction from sparse sensors and material property inference from a limited
number of indirect measurements. Results show that the proposed framework
achieves significant improvements in reconstruction accuracy compared to uncon-
strained methods and enables effective inference with relatively small training
datasets that is intractable without constraints.

1 Introduction

Deep generative models (DGMs) have gained mainstream popularity by powering large language
models (LLMs) [OpenAl et al., [2024]] and text-to-image generators [Rombach et al.| [2022]], owing
success to hardware and software breakthroughs, and, importantly, proliferation of massive training
datasets. For science and engineering applications, data can be difficult and expensive to obtain, and
the quantities being modeled are often infinite-dimensional functions of space and/or time, further
exacerbating the data challenges. In order to fully leverage the power of DGMs in these scenarios,
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more research is needed on approaches to supplement the training of these models using domain
knowledge to offset the data limitations.

This paper considers the challenge of learning to sample from distributions of continuous functions
in the absence of large, dense training datasets. These random fields are ubiquitous in science and
engineering for modeling randomness in physical processes that vary spatially and/or temporally. For
example, random fields can model the distribution of material properties in heterogeneous media
[Ostoja-Starzewskil, [ 1998]], the velocity field in a turbulent flow [Mikulevicius and Rozovskii, [2004],
or the temperature profiles for climate patterns [|Guillot et al.,2015]. Training data for DGMs in these
settings can be limited in three (not necessarily mutually exclusive) ways: 1) only relatively few total
training data points are available, 2) each measurement may only provide partial/sparse information,
and 3) only indirect measurements (i.e., of a related random field) are possible. Depending on data
availability, two common scientific problems are the reconstruction of random fields from sparse
measurements and inferenc of unobserved random fields from indirect (and potentially limited
number of) data.

As DGM research has progressed from single-step (e.g., generative adversarial networks (GANs)
[Goodfellow et al.,[2014], variational autoencoders (VAEs) [Kingma and Welling, [2013]]) to multi-step
(e.g., score-based/diffusion models [Ho et al.| |2020} [Nichol and Dhariwal, 2021]], flow matching
[Lipman et al., 2022} [Tong et al.| 2023]]) to more recent latent-space models (e.g., latent diffusion
[Rombach et al., [2022], latent flow matching (LFM) [Dao et al., [2023]]), there has been a parallel
research effort to tailor these approaches for science and engineering. A common focus is imposing
constraints on DGMs to supplement training data with domain knowledge. These constraints are most
commonly differential equation residuals, popularized by physics-informed neural networks (PINNs)
[Raissi et al., 2019], but statistical constraints have also been considered [Wu et al.| [ 2020]. Single-step
DGMs offer a relative ease of incorporating constraints and a natural setting to output continuous
functions but suffer from training instability and mode-collapse Saxena and Cao|[2021]]. Multi-step
DGMs offer improved sample quality and stability but tend to work in a discretized (pixelized) space,
and care is needed to enforce constraints on intermediate, noisy samples during training [Bastek et al.,
2025].

Here, we propose a constrained LFM (c-LFM) approach for modeling random fields with limited
data that combines the ease of constraint incorporation of single-step methods with improved stability
and sample quality of multi-step methods. LFM leverages a continuous normalizing flow in the
latent space of a pre-trained VAE to learn a mapping from prior distribution to complex latent
variable distribution. We modify the VAE in two important ways to facilitate sampling continuous
functions from sparse and limited data. First, a function decoder based on deep operator networks
(DeepONets) [Lu et al., [2021] is used to produce samples that can be queried and differentiated
anywhere in space/time during training (for imposing constraints) or sampling (for interpolation and
extrapolation). Second, a modified VAE loss with residuals of physical or statistical constraints is
used to learn a latent space representing functions that adhere to available domain knowledge. To the
authors’ knowledge, this work is the first to incorporate constraints into LFM for limited training data
regimes, offering the following practical advantages:

1. Models random fields, i.e., aleatory uncertainty as a distribution over functions (rather than
the simpler, more common estimation of epistemic uncertainty about a single function).

2. Remains effective even when only sparse or indirect data is available at train time.

3. Produces samples that are continuous functions of space and/or time.

We demonstrate both reconstruction and inference of random fields with c-LFM on both illustrative
toy problems and real-world applications.

2 Related Work

Relevant work on tailoring DGMs to perform probabilistic modeling for science and engineering is
reviewed here, separated based on category of DGM. As our c-LFM approach 1) models random
fields (distributions of continuous functions), 2) operates in the limited data regime at train time, and
3) produces continuous functions of space/time, we focus on these aspects.

*We use “inference" to refer to solving inverse problems involving random fields, and mainly refer to the
“inference" stage of DGMs as “sampling" to avoid confusion.



Single-Step Models exhibit high-speed sample generation and relative ease of generating constrained
functions of space/time. GANs were used to model fluid flow using covariance constraints [Wu et al.|
2020] and novel discriminator architectures [Xie et al., |2018] to encourage physical consistency,
albeit in a data-driven regime. Physics constraints imposed in adversarial training procedures were
used to infer unknown deterministic functions from partial/noisy data [Yang and Perdikaris| 2019,
Daw et al.| [2021]]. Methods for estimating random fields from limited data by incorporating physics
knowledge were proposed using GANSs [Yang et al., [2018]] and VAEs [Zhong and Meidanil 2023,
Rodrigo-Bonet and Deligiannis| [2024]], while |Rodrigo-Bonet and Deligiannis| [2024] considered
discrete, rather than continuous, quantities of interest.

Multi-Step Models improve upon single-step methods in stability and sample quality, but typically
operate in discrete (pixel) space and require special care when enforcing constraints on intermediate
samples during training. Bastek et al.|[2025]] proposed a physics-informed diffusion model that uses
scaling and annealing to enforce constraints but requires finite difference to evaluate constraints due
to the discrete nature of the diffusion model. Other diffusion model-based approaches apply physics
constraints at sampling time instead [Christopher et al.| 2024, Jacobsen et al., 2024} |Shu et al.| 2023,
Huang et al.,|2024] or use conditional sample generation with no constraints [Dasgupta et al., | 2025],
and thus do not apply when training data is sparse/indirect. Flow matching with physics-controls
were investigated by [Holzschuh and Thuerey| [[2024] for inferring deterministic functions.

Latent-Space Models have been tailored to solve science and engineering problems. Latent diffusion
models were used to solve inverse problems in|Song et al.|[2024]] for medical imaging and in Shmakov
et al.|[2023]] for high energy physics. The former used optimization to promote data consistency
during sampling while the latter introduced a novel “variational latent diffusion" model with physics-
informed consistency loss. |Du et al.|[2024]] used a latent diffusion model for turbulence reconstruction
and super resolution, but used a conditional neural field approach in a data-driven regime rather than
relying on physics information.

3 Background

A random field can be defined as the n-dimensional mapping, U : X x Q — R”, where X C R% is
the physical domain representing spatial/temporal coordinates (1 < d, < 4), and €2 is a sample space
accounting for randomness in U. For each fixed @ € Q, u(x) = U(x,®) defines a deterministic
functionﬂ over X, while each fixed x € X, U(x,w) represents a random variable in R™. The
ability to generate samples of random fields, u(x), that are consistent with available data, physically-
admissible, and can be evaluated at arbitrary x is of great importance to science and engineering
applications.

A common challenge of applying DGMs in this context is sparse and limited training data. More
concretely, let T(u) = y € R™*™ be a measurement operator where y = {u(x),x € X*}
are finite dimensional observations of u and X? is a set of m spatiotemporal coordinates where
measurements are available. Assume a collection of [V independent observations are available for
training, represented by the empirical probability distribution, p(y) = {y"?}},. There are many
practical situations where m is small (e.g., sparse measurements in space and/or time when few
sensors are available) or N is small (e.g., measurements are expensive and/or time consuming).
Furthermore, many applications only allow indirect observations, i.e., measurements of U are
leveraged to perform inference on a related random field of interest, V(x,w). We focus on the
challenges above but do not address noisy measurements, an important limitation left to future work.

While science and engineering contend with smaller datasets than language and image applications,
domain knowledge in the form of statistical and physical constraints can often be exploited, i.e.,

R(U(X’w)) =0, (1)
F (u(x),v(x)) =0, )

where v(x) = V(x,®). R enforces a known probabilistic metric and operates on random variables,
e.g., prescribing a known mean, pi,,, as R (U) = E[U] — pu,,. F typically represents the residual of
known partial/ordinary differential equations that operate on deterministic functions, e.g., F'(u,v) =

3We largely follow the convention of denoting random quantities with uppercase letters and deterministic
realizations of random quantities with lowercase letters. Vector-valued quantities are identified by bold fonts.
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Figure 1: ¢c-LFM for modeling random fields from limited data. A VAE with function decoder
learns a latent representation of the continuous random field, U(x, w), from sparse observations.
VAE loss terms are shown in purple boxes, where a residual error supplements limited data with
statistical/physical constraints. Flow matching enables latent variable sampling.

Nz (u, v), where N, is a differential operator. Two data-limited science and engineering problems
demonstrating the use of these constraints are described next.

3.1 Problem 1: Random Field Reconstruction from Sparse Data

* Goal: Learn the probability distribution, p(u), over functions u(x) given the observations,
{y}N |, and statistical constraint(s), R(U). A DGM is sought that generates samples of functions
u that satisfy R and are consistent with observations.

* Data Characteristics: There are sufficient numbers of observations (/N >> 1) but each observation
only provides sparse information on u, i.e., m is small.

» Target Application: Wind velocity field estimation where probabilistic assessments of wind flows
are required continuously over a spatial region and short time horizon, but wind measurements are
only available on a relatively coarse spatiaotemporal grid.

3.2 Problem 2: Random Field Inference from Indirect Data

* Goal: Learn the joint probability distribution, p(u,v), over functions u(x) and v(x) given
observations, {y("}~ . and physical constraints relating the functions, F(u,v). A DGM is
sought that generates pairs of functions (u(x), v(x)) that satisfy F' and where u is consistent with
observations.

 Data Characteristics: The primary quantity of interest, v(x), is unobservable. A related quantity,
u(x), is observed with sufficient numbers of sensors per observation (m >> 1) but the total
number of observations may be limited, i.e., /N may be small.

* Target Application: Material property characterization where the property varies spatially within
a test article and also between different test articles, e.g., due to manufacturing variability. Experi-
mental techniques provide dense measurements per test but relatively few tests can be performed.

3.3 Random Field Vs. Deterministic Function Estimation

There is an important distinction between the reconstruction and inference of random fields (the focus
of this work) versus deterministic functions (the focus of a majority of existing work [e.g.,
and Perdikaris| 2019] [Yang et all 2019] [Shu et al| [2023])). For random fields, we leverage DGMs to
model the aleatory uncertainty (intrinsic randomness) as a probability distribution over deterministic
functions. When estimating a deterministic function, the DGM quantifies epistemic uncertainty
(lack of knowledge about the true function) due to limited and/or noisy data. Mathematically,
most previous work has approximated conditional probability distributions for both reconstruction,
p(u|7 (u) = y) [Du et al., 2024, Tran et al., 2020], and inference, p(v|7 (u) = y*) [Dasgupta
let al.; 2025, Shmakov et al.,[2023]], while we seek the marginal/joint distributions p(u) and p(u, v).




4 Methodology

An overview of the framework is shown in Figure [I The foundation of the c-LFM approach
involves generative modeling in the latent space of a pretrained VAE using flow matching. The
VAE encodes discrete (potentially sparse) data into latent variables that are then transformed into
continuous function samples using a function decoder. Known physical and statistical constraints
are incorporated into the VAE loss function through a residual error. The latent space provides
a compressed (typically low-dimensional) function parameterization that leads to straightforward
training and sampling with flow matching. See Appendix [A.2.T|for training and sampling algorithms.

4.1 VAE with Function Decoder and Constraints

Following [Kingma and Welling|[2013]], we assume samples, u(x), are generated from the conditional
distribution, p(u|z), where z € R% are d, unobserved (latent) variables described by a prior
distribution, p(z). The posterior distribution of the latent variables is ¢(z|y), where y = 7 (u)
are finite observations of function u, as described in Section [3} Note that z can be viewed as
accounting for stochasticity in the random field, i.e., U(x,w) = U(x, Z(w)) and we seek to estimate
p(u) = [ p(ulz)p(z)dz.

VAEs approximate the conditional probability distributions with a neural network-based encoder and
decoder. The encoder network, £4, is parametrized by ¢ and maps discrete observations to latent
space, z = E4(y) ~ ¢¢(z]y). The reparameterization trick [Kingma and Welling, [2013]] is used such
that latent variables are sampled as z = By tE0OTy, where € ~ N (0, I), o denotes an element-wise
product, and py, 0 are the mean and standard deviation of go(z|y) predicted by the decoder.

To decode a latent sample, z"), into a continuous function, u¥)(x) ~ pe(ujz = z19)), our first
modification is to implement a function decoder, Dy, using DeepONets [Lu et al.l 2021]:

p
Dy(z,x) = > bii(z )ty (x; ). 3)
k=1

Here, 0 = [4), £] and the decoder output is the dot product of branch network, b¥, which receives
latent variables, and frunk network, tg, which receives spatial/temporal coordinates. This architecture
decomposes U(x,w) into stochastic and deterministic components, as is common in random field
modeling [[Karhunen, |1947, Loeve, |1955] X1u, 2010], and provides a simple method of evaluating
samples arbitrarily in R, Note that in principle our framework should be compatible with other
function parameterizations as well. For the case of random field inference (Section @ a second
decoder for v(x), Dy(z, x), is defined similarly.

Since we assume observations, y, provide only partial and/or indirect information for generative
modeling, our second VAE modification updates the evidence lower bound (ELBO) loss, L1, o, to
incorporate statistical and physical constraints. For a single batch of data, {y(J) }, the updated loss is

£(¢.0;yY) = Lu1p0(,6:yD) + M IRDEED )P + A IF(Dy (), x), D), )|
= |70y, %)~y 2+ MaDice, (4529 lyD), p(z))

Reconstruction error

KL regularization
+ M| R(Dg (29, %)) |2+ || F(D (2, x), Dy (2", %)%,

Statistics residual Physics residual

4 4 “
where z\) ~ g4 (z]ly = y)), D, is the Kullback-Leibler (KL) divergence, and \,., As, Ay are
weights. The expected loss, E[£] = & Zle L(¢,0;y")), is minimized during training with B

batches.

Equations|l{and [2|are intended to hold ¥x. This is commonly implemented by estimating residual
terms over collocation points {%(©)}¢_, [Raissi et al., 2019]. We choose these points randomly at
each training iteration, X(¢) ~ Uniform(X’). While simultaneous statistical and physical constraints
is possible, we apply one at a time (statistical for reconstruction and physical for inference). Details
regarding constraint residual calculations are provided in Appendix



4.2 Flow Matching

Latent generative modeling approaches like LFM typically deemphasize D, to encourage regular-
ization while enabling a more expressive latent space, e.g., Ax; ~ 1076 [Rombach et al., 2022]. Then,
multi-step generative models can be trained to sample the posterior p(z|y) instead of simply decoding
samples from the prior p(z), since those distributions will generally differ. The LFM approach used
here and described below follows the originally proposed method [Dao et al., [2023]].

Let zg = E4(y) be an encoded observation and z; denote random noise, i.e., z; ~ N(0,I). Flow
matching posits the following ordinary differential equation to transform samples from reference
(noise) distribution to source (latent) distribution:

dZt
— = t 5
o v(z¢,t) (5)
where time ¢ € [0,1] and v : R% x [0,1] — R% is the velocity to drive the flow between
distributions. We choose the simple but effective linear interpolation between reference and source
samples, z; = (1 — t)zg + tz1, yielding a constant velocity ODE with v = z; — zg.

A neural network approximation for velocity, v/, with parameters 7, is introduced and trained using

n* = argmin By 4, [|z1 — 2o — vy (2, 1)]]3, (6)
n

where ¢ ~ Uniform(0,1) and z; is sampled by interpolating between zo = E4(y) fory ~ p(y)
and z; ~ N(0,I) given t. After training, realizations of zy can be generated by numerically
integrating EquationE]with random noise as the initial condition and right-hand side v,~. Resulting
latent variables can be then be decoded to produce continuous samples of u(x) and/or v(x). See
Algorithms [2 and [3| for more details on training and sampling, respectively.

5 Experiments

The proposed c-LFM approach is demonstrated for random field reconstruction (Section [3.1)) and
inference (Section [3.2)), with each illustrated by simple toy demonstration and an application with
real-world motivation. Code is provided at https://github.com/nasa/random_field_c-1fm.

5.1 Demonstration 1: Random Field Reconstruction from Sparse Data

We reconstruct a one-dimensional random field (i.e., stochastic process) using sparse observations
and a statistical constraint. The unknown field is modeled by a Gaussian process (GP) with linear
mean function and squared exponential covariance function:

uw(z) ~ GP(u(x) = x,C(x,2")), x€[0,1]

2 7
C(x,z") = o”exp (—'x 2; H ) ; @

with variance, 02 = 0.5, and covariance length, I = 0.1. The goal is to learn to sample u(x) for
sparse (m < 3) equally-spaced sensors but with sufficient observations (N = 1000). A statistical
constraint, R, imposes the true covariance structure during training to supplement the sparse data.
The constraint residual was computed with C' = 50 randomly chosen collocation points and weighted
by A, = 0.1 during training.

Figure [2] shows the true GP samples and covariance and corresponding generated samples for
m = 1,3, with and without a covariance constraint. c-LFM begins to generate visually similar
samples and covariance to the true field with just a single sensor, while standard LFM generates
spatially constant samples, as expected. Both approaches accurately capture the mean for m = 3,
while the no-constraint approach significantly underperforms the proposed approach in estimating
covariance. While simple, this example illustrates the impact of statistical constraints on random field
reconstruction from sparse data. See Appendix for more detail.
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Figure 2: Demonstration of random field reconstruction from sparse data with c-LFM. (Top) True
samples and statistics from a Gaussian Process along with (Botfom) generated samples and statistics
using c-LFM with covariance constraint (left) versus standard LFM with no constraint (right). The
statistical constraint allows for accurate covariance recovery from sparse sensors.
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Figure 3: Demonstration of random field inference from indirect data with c-LFM. (Top) true samples
of u(z) (observed) and v(x) (unknown) and (Boftom) generated samples along with true (blue) versus
generated (red) pointwise distributions. A physical constraint incorporating the Poisson equation
allows for inference of v(x) from limitied observations of u(x) only.

5.2 Demonstration 2: Random Field Inference from Limited and Indirect Data

A spatially-varying, random coefficient, V' (x,w), is estimated from observations of random field,
U(z,w), where samples of the two are related through the one-dimensional Poisson equation:

% (v(m);h;) =—f(x), z€]0,7],
u(0) =0, u(mr) =0

®

with f(x) = sin(z), v(z) = 1 + ex?, and € ~ N(0.2,0.05). The goal is to learn to sample from
p(u, v) with limited observations of u(z) (N < 100) and sufficiently dense sensors (m = 25) using
c-LFM. Synthetic data is generated by sampling €, computing v(z), and using numerical integration
to solve for u(z). The unknown random field, V (z,w), is learned by incorporating Equation [g]into
the loss via physical constraint F with weight, Ay = 0.001, and C' = 50 collocation points.

A summary of the results is shown in Figure[3] comparing samples of the true and generated random
fields for N = 100 and N = 10. Sample-based empirical PDFs of U(z = 7/2) and V (z = ) are
shown to compare the point-wise distributions of the estimated versus true fields. Despite having no
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Figure 4: Wind velocity estimation (a) diagram along with comparisons of (b) mean and variance
wind fields and (c) coherence for the true wind test data versus generated samples (with and without
coherence constraint).

direct observations, V' (z,w) is recovered effectively using c-LFM with physical constraint, allowing
reasonably accurate inference with only N = 10 observations. We emphasize that inference of
V(z,w) is intractable with standard LFM since there is not direct training data. See Appendix
for more detail.

5.3 Application 1: Wind Velocity Field Estimation

A real-world example of random field reconstruction is presented to demonstrate c-LLFM in a higher
dimensional setting with a more complex statistical constraint. The goal is to generate realistic
samples of a wind velocity field, U(x,w), from sparse spatio-temporal observations. Synthetic
measurement data is generated via Monte Carlo simulation following a common wind engineering
formulation [Carassale and Solari|[2006]], decomposing a random wind field as

U(Xvw) = [,LU(X) + W(Xvw)v 9

where x = [1, 2, z3,t], i, is a deterministic mean function describing a logarithmic profile versus
altitude, and W (x, w) is a zero-mean, stationary GP. The spatial and temporal correlation of W (and
hence U) is prescribed by the coherence function:

(10)

T _
Coh(x,x',n)exp( nfle” (x = x| ),

[l (%) = s (X7 |
which generalizes spatial correlation to include frequency, n. Decay coefficients c control coherence
decrease in each spatial direction. Samples of U were generated for prescribed mean and coherence
using the spectral representation method [Shinozuka and Deodatis}, 1991} [Deodatis and Shields}, [2023]|
implemented in UQpy [Olivier et al., . See Appendex [A.1.3|for details.

This example focuses on reconstructing the U; velocity component over time in a two-dimensional
plane, [z, z3,t] x [0,100]m x [1,100]m x [0, 42.5]s; see Figure[d](a). The training data comprised
N = 5000 velocity samples at 256 time steps and four equally-spaced vertical sensor arrays with
ten sensors each, mimicking real-world wind profilers [Coulter and Muradyan| 2020}, [Shah et al]
[2025]]. ¢c-LFM was applied with Equation[TOJused as a statistical constraint for training, where the
coherence residual was estimated based on the pytorch fast Fourier transform. Importantly, since
the coherence is a normalized metric, c-LFM must balance learning the wind velocity mean and
variance from the sparse data and spatial/temporal correlation from the statistical constraint.




Figure 4] (b) shows mean and variance fields estimated from 1000 samples and compares generated
samples with and without a coherence constraint to true samples from a test dataset. Generated
samples for both cases are similar, accurately recovering the mean but slightly underestimate the
variance near z3 = 0 where test data variance increases rapidly. Figure d](c) compares true wind
coherence to empirical estimates from generated samples at five spatial coordinate pairs. Standard
LFM struggles while c-LFM accurately recovers the coherence from the statistical constraint. The
coherence constraint also appears to help regularize the problem, improving the convergence of LFM
training, see Appendix [A.T.3]for details.

5.4 Application 2: Material Property Characterization

A real-world engineering inference problem is presented in which only indirect observations are
available. The goal is to estimate non-observable, spatially-varying material property field, V (x,w),
using measurements of the mechanical deformation, U(x,w), induced by a deterministic tensile
force. We consider the two-dimensional domain illustrated in Figure a) where x € [0, 1] x [0, 1] and
u € R?. Inference is facilitated through a second-order partial differential equation (PDE) that relates
samples of U and V', N, (u,v) = 0 (Equation . Additionally, there are homogenous Dirichlet
boundary conditions, B;(u), on I'; and Neumann boundary conditions, B,,(u,v), on T'4.

The ground truth material property was modeled as a lognormal random field with squared exponential
correlation function. Synthetic training data for U were generated by randomly sampling V' and
numerically solving the governing PDE, as described in Appendix [A.2] Measurements of U were
made available on a (10 x 10) uniform grid spanning the domain with left column (x € I'y) removed,
resulting in m = 90 sensors. To study the effect of limited data at train time, we vary the number
of training data, N = 10, 50, 100, 250, 500, 1000. Three trials with different random seeds were
conducted for each value of N. The physics constraint, F(u,v) = N (u,v) + Bg(u) + B, (u,v),
was evaluated with C' = 100 and Ay = 1075, See Appendix for details.

Figure b) and (c) show the accuracy of inferred random material property field, V' (x), for the case
of N = 1000 training data in terms of the estimated probability density functions (PDFs) and spatial
correlations throughout the domain. The PDFs estimated at three distinct locations match closely
with the ground truth, which is shown as a solid black line, albeit with a thinner lower tail. There is
also relatively close agreement between the estimated spatial correlation across three horizontal slices
in the domain (Correlation(z1,0.5)) relative to the ground truth random field. The relative L2 error
between true and estimated fields is shown in Figure Ekd) as a function of NV, where it can be seen
that the accuracy is comparable to the N = 1000 case until the errors increase noticeably for N = 10.
Plots of individually generated samples are provided in Appendix [A.T.4] The results demonstrate the
ability of c-LFM to characterize unobservable random fields using physics constraints and limited,
indirect data at train time, while inference would be intractable with an unconstrained approach.
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Figure 5: Material property characterization (a) diagram, the (b) PDF at three distinct spatial
coordinates, X, and (c) correlation with respect to V' (0.5, #2) along horizontal slices versus the true
material property, and (d) the relative L2 error in mean and variance field vs. number of train data.

6 Conclusion

Inspired by science and engineering applications, a novel constrained LFM (c-LFM) approach for
learning random fields from limited training data was introduced. By integrating domain knowledge
constraints into a VAE with a DeepONet function decoder and leveraging stability and sample quality



benefits of LFM, accurate random field reconstruction from sparse data and inference from indirect
data was demonstrated. A wind velocity field estimation problem highlighted the importance of
incorporating statistical constraints for capturing realistic field characteristics from sparse sensors.
While both c-LFM and standard LFM accurately captured the mean and variance of the field, the
incorporation of the coherence constraint generated significantly more realistic spatial and temporal
coherence. Applying the statistical constraint also appeared to help regularize the problem and
improve the convergence of the VAE in this case. A material property characterization problem
demonstrated that accurate inference of a random field was possible with indirect observations using
c-LFM. Apart from providing tractability, the addition of the physical constraint also improved
training in the small-data regime. Accuracy of the model when trained with N = 50 samples was
similar to the case of N = 100, representing significant test and cost reduction. The main limitation
of the proposed work is that it did not directly address noisy training data, another common challenge
in science and engineering. Future work will include extension of c-LFM to imperfect physical or
statistical knowledge manifesting as a mismatch between training data and imposed constraints, with
noisy data being one such example. Finally, the real-world applications presented will be studied
further, where it is expected that the performance could be significantly improved by considering
more advanced neural network architectures within the VAE, integrating adaptive training strategies
to better balance the VAE loss terms, and carrying out more extensive hyperparameter tuning.
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A Appendix

A.1 Application Details
A.1.1 Random Field Reconstruction from Sparse Sensors

Additional hyperparameter studies for the random field reconstruction demonstration are illustrated
here. Two error metrics are introduced to separate accuracy into two components: mean and
covariance. Mean error is here defined as mean squared error, MSE, (over the spatial dimension) of
the predicted the mean (in the stochastic dimension). Similarly, the covariance error is defined as
the MSE of the predicted covariance function. The mean and covariance are estimated with 1000
generated samples on 100 equally-spaced points for the MSE calculations.

Figure[6] (left) illustrates these two errors as a function of residual weight, \. As a residual weight
increases, a higher penalty is placed upon the statistical residual, R, which results in lower covari-
ance errors. The improvement in covariance error comes at the cost of reduced accuracy in mean
predictions; thus, there is an optimal residual weight for this demonstration that balances these two
errors (approximately A = 0.01). Figure[6] (right) illustrates that errors are relatively invariant to the
number of collocation points, C, used to calculate the residual. Using even a very small number of
collocation points provides the necessary statistical regularization.

The type of statistical constraint is used for R is compared in Figure[7|as a function of the number
of sensors, m, used in training. The comparison is made between a residual based on covariance
matching compared to a residual based on correlation matching. The correlation constraint is the
same as the covariance constraint without matching the magnitude (i.e. variance). It is seen that both
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constraints provide benefit over the no-constraint case. However, the correlation constraint, which
lacks the magnitude component, must rely on more sensor measurements in order to estimate that
portion of the signal.

Figure [§] compares the proposed approach with LFM versus reconstructing the random field by
sampling the pre-trained VAE directly. That is, latent vectors are first sampled from the VAE prior
distribution, zo ~ N (0, I), and then decoded as u(z) = Dy (z, x). The accuracy of each approach is
compared for estimates of the GP mean function (a) and covariance (b). As expected, using LFM
to sample latent representations leads to higher accuracy relative to using the VAE prior. Given
the simple nature of the demonstration (and the learned latent space), however, the difference in
performance is not substantial.

A.1.2 Random Field Inference from Limited Observations

Additional hyperparameter studies for the random field inference demonstration are illustrated here.
As in the previous section, the hyperparameters of residual weight, A, number of collocation points, C,
and number of data points, N, are investigated. Figure [J]illustrates that there is relative insensitivity
to these parameters with a couple notable exceptions. First, performance degrades at large residual
weights (A, > 1.0). And second, there is a consistent trend of more accurate results as the number of
data points increases. The mean and variances are estimated with 1000 generated samples on 100
equally-spaced points for the MSE calculations.

Figure [0 compares the proposed approach with LFM versus reconstructing the random field by
sampling the pre-trained VAE directly. The accuracy of inference of the unknown random field, V' (x),
is shown in terms of mean in Figure|10|(a) and variance in Figure|10|(b). Sampling with LFM leads
to substantially higher accuracy for all training dataset sizes considered.

A.1.3 Wind Velocity Field Estimation

Further information on the random wind velocity field reconstruction application are provided here,
focusing in particular on details of the process for generating training data, the implementation of the
statistical coherence constraint residual, and additional results that further illustrate the performance
of the proposed approach.

Training Data Generation

Wind velocity training data was generated based on the classical spectral representation approach
Shinozuka and Deodatis|[[1991] for simulating stochastic processes, using a description of spectral
properties borrowed from wind engineering literature [[Carassale and Solari, 2006]. Here, the
formulation was motivated by the need to model wind loading on large structures like bridges
probabilistically, so the statistical properties of the training data used here can be considered realistic
in this context.

=@— (ovariance Error
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Figure 6: Errors of random field reconstruction when using a covariance constraint. Here the number
of sensors is m = 3 and (left) the number of collocation points C' = 50, (right) the residual weight is
A=0.01
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Figure 7: Comparison of constraint types on errors of random field reconstruction. Here the number
of collocation points is C' = 50 and the residual weight is A = 0.01.
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Figure 8: Random field reconstruction using LFM versus the pre-trained VAE directly, comparing the
MSE in the a) mean and b) covariance estimates.

As mentioned in Section[5.3] wind velocity is idealized as being comprised of two components via
Equation Et a deterministic mean function,

p,(x) = 2.5u,In <x3) , (11)

20
with shear velocity, u, = 1.8 m/s, and surface roughness, zy = 0.015 m, and random turbulence
component, W (x, w), modeled as a zero-mean Gaussian process. The main task in obtaining training
data for U(x, w) is thus to generate random samples of W with prescribed statistical properties. Here,
we largely follow (Carassale and Solari [2006] for the formulation of these properties for realistic wind
fields, with the simplification of focusing on a single component of velocity, Uy, and assuming W is
aligned with axes of the global reference system, removing the need for coordinate transformations.

The basis of the formulation is the definition of the cross-power spectral density (CPSD) function (the

generalization of the covariance function to include a dependence on frequency, n) describing W,
ST (x, %', n) = /S1(x;n)S1 (x'sn)Coh(x, X', 1) (12)

where S is the auto spectral density of the W turbulence component and Coh is the coherence

function, as defined in Equation using decay coefficients ¢ = [3,3,0.5]. A suitable definition of
S11 for modeling turbulence is given as follows

nSn(xin) An(La /|l (X)) (13)
o} (x) (1 + 1.5\ (L /||, (x)]]))77
where \; = 6.868 and 07 and L are the variance and integral length scale of W7, given by
o? = [6 — 1.1atan(Inzo + 1.75)]u?2,

14
L= 300(%)0.67-&-0.051”0. (14
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Figure 9: Effect of hyperparameters on random field inference demonstration. Here the number
of sensors is m = 25, the number of data points is N = 100, the number of collocation points is
C = 50, and the residual weight is A = 0.001, except where the z-axes indicate variation.
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Figure 10: Random field inference using LFM versus the pre-trained VAE directly, comparing the
MSE in the a) mean and b) variance of the inferred random field V' (x).
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Figure 11: Wind velocity field training data verification. Comparison of the true and empirically-
calculated values from the training data for the (a) mean wind field and (b) coherence between the
wind velocity at five random pairs of spatial coordinates.

The spectral representation method (SRM) was employed to generate samples of /7 using an open-
source implementation in UQpy [Olivier et all,[2020]]. SRM is a classical framework for simulating
random processes and fields that uses the fact that a zero-mean, stationary stochastic process with
known CPSD can be approximated by a finite series representation of cosine terms with random phase
angles [Deodatis and Shields} [2025]. To apply the SRM, a CPSD matrix, S¢F € RNea X Nag XNy |
must be assembled by evaluating the CPSD in Equation[I2]on a spatial and frequency discretization.
A 10 x 10 uniformly spatial grid across x5 € [0,100] m and x3 € [H,nin, 100] m was used, where
H,,;», = 1 to avoid numerical issues due to Equation@for 23 < zg. A grid of Ny = 128 uniform
points for f € [0,3.0] Hz was used to discretize frequency (A = 3.0/Ny). Following [Carassale]
|| this choice of frequency discretization simulates 7' = 1/A ¢ = 42.5 seconds with
Ny = 2 x Ny = 256 time steps. Sparse measurement data was simulated for the example by keeping
every third vertical column of sensors, starting at x5 = 0 m, filtering data from 60 total grid points
(see Figure[a). A Python implementation of the above procedure is included in the code repository
for the paper.

A verification of synthetically-generated wind velocity used for training data is shown in Figure [T}
Here, figure (a) compares the mean of the training data to the true mean function in Equation[TT]and
(b) compares the empirically-calculated coherence using the training data (see next section) with the
prescribed coherence in Equation It can be seen that good agreement is observed between the
training data and prescribed values.

Residual Evaluation

The wind field reconstruction example leverages a statistical constraint that relies on the residual
between the true coherence function (Equation [I0) and the empirically estimated value from DGM
wind velocity samples, @i(x). Let the generated wind velocity at a given spatial collocation point,
% = (37,2, be given as 1§ = a(2,#{”, t). The coherence between wind velocities at two

different collocation points, x(°*) and %(¢2), can be empirically estimated as:

2
VQ(f)_ |P12(f)|

~ Pu(f)Pa(f) )
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Figure 12: VAE convergence for the wind velocity estimation application. The loss function terms
(top) and validation metrics (bottom) versus epoch both with and without the coherence constraint.

where P5 is the (empirical) CPSD between 47" and 472 and P17 and Py are the (empirical) auto
spectra of @7 and @2, respectively. The empirical spectral densities, P, are computed using
Welch’s method based on the Fast Fourier Transform (FFT) in PyTorch. Finally, the
coherence residual for a single pair of collocation points is calculated as follows:

Ny
1 , R ~ ,
7, 2 0 (F) = Con(x(2), %), FO)|. (16)
i=1

Additional Results

Figure [I2] compares the convergence of LFM both with and without the coherence constraint. The
addition of the coherence constraint appears to add some stability to the training process, as evidenced
by the periodic spikes in the loss function for the conventional LFM that are not present with the
constraint. Both approaches achieve similar error in the mean and variance estimates on the validation
set, but the conventional approach cannot match the coherence of the true data.

Figure [I3] compares a representative wind velocity sample from the test dataset versus generated
samples both with and without the coherence constraint incorporated during training. Four snapshots
in time are shown for each sample. It can be seen that imposing the coherence constraint with c-LFM
allows more realistic variability in the horizontal direction to be captured, while the generated sample
with no constraint has nearly no variation in the horizontal direction due to the sparseness of the
sensors in this direction (only four locations along x5 - see Figure@ (a)).

Table [T] compares the errors in estimated wind velocity statistics from sampling with LFM versus
sampling the pre-trained VAE directly both with and without the coherence constraint. While the
errors are comparable for the coherence and mean, the variance MSE is an order of magnitude higher
when sampling the VAE compared to using LFM. The statistics used for the error calculations were
estimated from 1000 samples for both the generated and test data.

Table 1: Errors in wind statistics for sampling with LFM versus the pre-trained VAE both with and
without the coherence constraint.

Sampling Coherence MSE Mean MSE Variance MSE

With Constraint LFM 8.25e-03 1.00e-01 1.61e+00
VAE 1.28e-02 3.41e-02 1.46e+01
No Constraint LFM 1.02e-01 1.53e-01 2.10e+00
VAE 9.23e-02 1.78e-02 4.25e+01
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Figure 13: Representative wind velocity samples at four different instances in time for the test data
(top), generated with coherence constraint (middle), and generated without coherence constraint
(bottom).
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A.1.4 Material Property Characterization

Additional details regarding the material property inference problem are included here to aid repro-
ducibility. The governing PDE is given explicitly as:

Ne(u,v) =V -o(u,v) =0. 17)

where o is the second order stress tensor. Assuming a two-dimensional plane-stress formulation,
isotropic elasticity, and small strain theory [2013], the stress tensor is
2V 2v
= ——|Vu+Vu' + ——Tr(Vu)l 18

where V' is the spatially varying elastic modulus (stiffness), v is the Poisson ratio, and I is the identity
tensor. We assumed a constant v = 0.3. The boundary conditions are u; = 0 for x € I';, up = 0 for
x = (0,0) and

oc(w,V) n=r1 (19)
where n is the boundary outward normal, 7 = [0,0] on I'; and '3 and 7 = [1.5,0] on T'y.

In this application, the random field V'(x, w) represents the aleatory uncertainty associated with a
family of test articles with spatial and test-to-test variability. Relatively dense measurements are
feasible in real-world applications through the use of digital image correlation [Sutton et al., 2009],
but the total number of test articles is often 10! — 102. The ground truth material property was
modeled as the lognormal random field, implemented by transforming a zero-mean Gaussian process
using an exponential function,

V(X, W) =+ ﬁexp(g(x, w)), (20)

_ 12
9(x,w) ~ GP <o,exp(—%)>, 1)
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Figure 14: The absolute error between the generated and true (a) mean and (b) standard deviation
fields in the inferred random field, V' (z,w) for N = 1000.

with o = 1.0, 8 = 0.1, and correlation length [ = 1.0 [Warner et al.,[2020]]. Samples were generated
by computing a truncated Karhunen-Loeve (KL) expansion |[Fukunaga and Koontz|[[1970] for g(x)
and then applying the transformation in Equation[20] A five-term KL expansion was used, retaining
~ 99% of the variance of g(x). Using the boundary conditions described in Section the training
data was then generated using a forward solve of a finite element model implemented in the FEniCS
Python library [Alnzs et al., 2015]] with the resulting 1 fields discretized as described in Section [5.4]
per simulated test specimen.

Comparisons of the estimated PDFs and spatial correlations are shown in Section[5.4] Additional
results are shown in Figure [T4] showing the absolute errors in the estimated mean and standard
deviation fields of the inferred material property field estimated from 1000 samples. These results
help to put into context the mean and standard deviation L2 errors versus N that are shown in Figure

B(d).

A qualitative assessment of the VAE is presented in Figure[I5] Three ground truth samples are shown
in subfigure (a), with the corresponding encoded/decoded (N = 1000) fields shown in subfigure (b).
The encoder and decoder must work in concert to correctly recreate the sampled fields, including
correct application of the physical constraints since field samples V' (x, @) are unknown and not
provided at training time nor to the encoder in this example. While there is close correspondence
between the true and encoded/decoded observations (u; and us), there is noticeable discrepancy
between samples of the inferred field, V, indicating a relative lack of accuracy in the enforcement of
the physical constraint. Given the well-known challenges in training neural networks with physics
residuals [Wang et al., [2021]], more advanced training approaches, including adaptive loss weighting
[2023] and collocation point sampling 2022], could improve the performance

when using c-LFM with physical constraints.

Once trained, LFM allows for the generation of new samples, as illustrated in Figure[T6] Note that
these samples were randomly generated and do not correspond with the samples shown in Figure[T3]

Figure[T7]compares the material property inference accuracy when generating samples with LFM
versus using the pre-trained VAE directly, where (a) shows the relative L2 error in the estimated
mean field and (b) shows the same error metric for the variance field. LFM typically provides
better accuracy for different training dataset sizes, but in many cases the errors are comparable.
This indicates that there is potentially too much regularization in the training of the VAE which is
causing limited expressivity in the latent space representation of the random fields considered. Thus,
increasing the capacity of the encoder and function decoder could improve the results and will be
pursued in future work.

A.2 Implementation Details

This section provides further implementation details for the proposed approach, including concrete
algorithms for training and sampling and a description of hyperparameters used for the experiments.
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Figure 15: (a) Samples from the true U and V random fields and (b) encoded/decoded versions
(N = 1000) of the same samples.

Generated

Figure 16: Generated samples from the estimated U and V' random fields (N = 1000).
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Figure 17: Inference of the unknown material property field using LEM versus the pre-trained VAE
directly, comparing the relative L2 error in the estimated a) mean and b) variance.

The main training pipeline for the VAE was implemented using PyTorch Lightning with GPU
acceleration and model checkpointing based on the minimum training loss. The Adam optimizer was
used with $; = 0.9 and B2 = 0.999 and learning rates provided in Appendix[A.2.3] All experiments
were conducted on an internal computing node equipped with eight NVIDIA A100 GPUs (80GB
memory per GPU), 128 CPU cores, and 750GB of system memory.

A.2.1 Algorithms

Algorithms|1|and [2| summarize the training procedure for the VAE encoder/decoder networks and the
latent flow matching velocity network, respectively. Sampling using the trained velocity network is
summarized in Algorithm[3] Details regarding the evaluation of the constraint loss terms in Algorithm
[T]can be found in Appendix [A.2.7]

Algorithm 1 Training VAE with Function Decoder and Residual Constraints

Require: Encoder £y, DeepONet decoder Dy, weights Ay, Ar, Ay
1: for each training iteration do
2: Sample batch {y()}2 , and collocation points {x()}<_,

3: for each j in batch do

4: po, 05 =Es(yD)

5: 2) = gy + €0 oy, with e ~ N(0,T)

6: Compute reconstruction: y/) = T (Dy (27, x))
7: Lyee = ||y —y@)2

8: L = Dir(ge(27)[y")), p(2))

9: Lutar = | R(Dy (29, x())|?

10: Lonys = | F(Dg (29, x(9), Dy (219, x(9))|]?

11: end for

12: L= ‘Crec + )\klﬁkl + )\rﬁstat + >\f£phys
13: Update parameters ¢, 6 by minimizing £
14: end for

Ensure: Trained encoder £4 and decoder Dy
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Algorithm 2 Latent Flow Matching Training

Require: Trained encoder &, velocity network v,,
1: for each training iteration do

2: Sample {y "}, ~p()

3 gy = E,(yV). 7 ~ N(0,T)

4: Sample (/) ~ Uniform(0, 1)

s 2 = (1—t0)gl) 440

6: v) = Zgj) — z(()j)

7: Minimize £ = & Zle |p) — V,,(zgj), )13
8: end for

Ensure: Trained velocity network v,

Algorithm 3 Latent Flow Matching Sampling

Require: Trained velocity network v,,-, trained decoder Dy
1: Zy ~ N (0 I)

2: Solve d;t‘ = —v,+(2,t) from t = 1 to t = 0, starting from z;

3: u(x) = Dy (20, %) = 325y bt (20; )t (x; €)

Ensure: Continuous function u(x)

A.2.2 Evaluating Constraint Residuals

The manner in which the residuals are computed varies between statistical and physical constraints.
For the former, any statistics appearing in R must be estimated using the current batch of samples
during training,

Esne,yor [R(U(x,2(w))] =0

Ng o (22)
~ 5> [ROpE, )]
i=1

where Np = % is the number of samples per batch and z?) is the i* latent variable sample in
batch j. Thus, the residual of the statistical constraint is evaluated at the set of collocation points as

follows:

Np 2

Z { R(D (299, i@))}

On the other hand, the physical constraints are intended to hold both ¥x and for all samples of u and
v. Thus, the residuals are evaluated on a per-latent-variable-sample basis as follows:

IR(Dj (29, x))|* ~ (23)

C Np

IE(Df (29, x), Dy (29, %)) ||* =~ ZZ

c=1 i=1

y 2
(J i (C))7 Dg(z(“), 5((0))))‘ (24)

A.2.3 Network Architecture and Hyperparameters

Network architecture and hyper-parameters used for each of the four examples are summarized in
Table 2] Most of the networks used were multi-layer perceptrons (MLPs) with GELU activation
functions. In the two application examples, it was found that more expressive architectures for
the branch and encoder was beneficial for the added problem complexity. For these examples,
an enhanced branch network was used with residual blocks containing SiLU activations, layer
normalization, and skip connections to improve gradient flow while enabling deeper representations
necessary for capturing the more complex function spaces (the number of hidden layers in Table 2]
corresponds to number of residual blocks used). For the wind velocity field estimation example, the
encoder portion of the U-Net architecture[Ronneberger et al.| [2015]] was adopted for a more capable
encoder.

23



Table 2: Neural network architecture and training details

Parameter Reconstruction Inference Wind Material
Demo Demo Estimation Characterization
Batch Size (per GPU) 256 256 128 256
Learning Rate 1073 1073 5x 1074 1073
Latent Dimension 4 4 128 64
DeepONet dimension (p) 64 64 128 128
Encoder # hidden layers 3 3 UNet 3
Branch # hidden layers 2 2 2 2
Trunk # hidden layers 2 2 3 3
Encoder hidden layer width 128 128 UNet 128
Branch hidden layer width 128 128 128 128
Trunk hidden layer width 128 128 128 128
Nkl 107¢ 10-6 1077 1076
Ar 1073 - 1072 -
As - 1072 - 10-°¢
Epochs 10k 10k 15k 20k
# GPUs 1 1 4 1
Approx. Training Time 10 min 15 min 40 hours 6 hours

For the flow matching implementation, a MLP with three hidden layers of 128 units each and GELU
activation functions was used for the flow model for all examples. Training was performed using
the Adam optimizer with a learning rate of 0.001, 81 = 0.9, 82 = 0.999, and a batch size of 128 for
1000 epochs. During training, a small noise component (standard deviation of 0.01) was added to the
interpolated points to improve stability. For sampling, we leveraged the Torchdyn library’s neural
differential equation implementation with an adjoint-based 4th-order Runge-Kutta (RK4) solver to
integrate the learned vector field with 100 evenly spaced time steps between ¢t = 0 and ¢t = 1. Very
little hyperparameter tuning was performed for flow matching in this study, so it is expected that
some accuracy improvements are possible for the results shown herein.

A.2.4 Code Attribution

We acknowledge the adoption of portions of the following open-source resources for the development
of code for this work:

The Annotated Diffusion Model

Authors: Niels Rogge and Kashif Rasul

Source: https://huggingface.co/blog/annotated-diffusion

Components Used: U-Net architecture implementation

License: N/A

Notes: We adapted the U-Net architecture with modifications to suit our specific requirements for
function decoders.

Conditional Flow Matching

Authors: Alexander Tong and Kilian Fatras

Source: https://github.com/atong01/conditional-flow-matching

Components Used: PyTorch wrapper for integrating flow matching with TorchDyn

License: MIT

Notes: The wrapper was used to interface our flow model with the Neural ODE solver for sampling
from the learned flow.

A.3 Broader Impacts

The proposed work is motivated by allowing breakthroughs in DGM research to be applied suc-
cessfully for scientific discovery and engineering applications where massive training datasets may
not be available. While incorporating prior knowledge and constraints into DGMs may have more
general utility beyond the applications considered herein, we expect the positive societal impact of
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our work to primarily lie in scientific domain. As with any approach that considers prior knowledge
as an input (e.g., Bayesian inference), a potential negative impact is the biasing of results when this
information is (knowingly or unknowingly) incorrect. Thus, care must be taken when formulating
physical/statistical constraints used to supplement training data with the proposed approach, and the
assumptions being made should be clearly articulated.
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